Modulating the interaction between gold and TiO2 nanowires for enhanced solar driven photoelectrocatalytic hydrogen generation.
نویسندگان
چکیده
The interaction strength of Au nanoparticles with pristine and nitrogen doped TiO2 nanowire surfaces was analysed using density functional theory and their significance in enhancing the solar driven photoelectrocatalytic properties was elucidated. In this article, we prepared 4-dimethylaminopyridine capped Au nanoparticle decorated TiO2 nanowire systems. The density functional theory calculations show {101} facets of TiO2 as the preferred phase for dimethylaminopyridine-Au nanoparticles anchoring with a binding energy of -8.282 kcal mol(-1). Besides, the interaction strength of Au nanoparticles was enhanced nearly four-fold (-35.559 kcal mol(-1)) at {101} facets via nitrogen doping, which indeed amplified the Au nanoparticle density on nitrided TiO2. The Au coated nitrogen doped TiO2 (N-TiO2-Au) hybrid electrodes show higher absorbance owing to the light scattering effect of Au nanoparticles. In addition, N-TiO2-Au hybrid electrodes block the charge leakage from the electrode to the electrolyte and thus reduce the charge recombination at the electrode/electrolyte interface. Despite the beneficial band narrowing effect of nitrogen in TiO2 on the electrochemical and visible light activity in N-TiO2-Au hybrid electrodes, it results in low photocurrent generation at higher Au NP loading (3.4 × 10(-7) M) due to light blocking the N-TiO2 surface. Strikingly, even with a ten-fold lower Au NP loading (0.34 × 10(-7) M), the synergistic effects of nitrogen doping and Au NPs on the N-TiO2-Au hybrid system yield high photocurrent compared to TiO2 and TiO2-Au electrodes. As a result, the N-TiO2-Au electrode produces nearly 270 μmol h(-1) cm(-2) hydrogen, which is nearly two-fold higher than the pristine TiO2 counterpart. The implications of these findings for the design of efficient hybrid photoelectrocatalytic electrodes are discussed.
منابع مشابه
Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution
A plasmonic Ag/TiO2 photocatalytic composite was designed by selecting Ag quantum dots (Ag QDs) to act as a surface plasmon resonance (SPR) photosensitizer for driving the visible-light driven photoelectrocatalytic hydrogen evolution. Vertically oriented hierarchical TiO2 nanotube arrays (H-TiO2-NTAs) with macroporous structure were prepared through a two-step method based on electrochemical an...
متن کاملSolar-driven photoelectrochemical probing of nanodot/nanowire/cell interface.
We report a nitrogen-doped carbon nanodot (N-Cdot)/TiO2 nanowire photoanode for solar-driven, real-time, and sensitive photoelectrochemical probing of the cellular generation of H2S, an important endogenous gasotransmitter based on a tunable interfacial charge carrier transfer mechanism. Synthesized by a microwave-assisted solvothermal method and subsequent surface chemical conjugation, the obt...
متن کاملDistinguishing Direct and Indirect Photoelectrocatalytic Oxidation Mechanisms Using Quantitative Single-Molecule Reaction Imaging and Photocurrent Measurements
Light-driven semiconductor-catalyzed oxidation reactions are of fundamental importance in photocatalysis and photoelectrocatalysis for removing organic contaminants in wastewater, solar energy conversion, and fine chemical synthesis. The underlying reaction mechanism is often unclear because it is difficult to measure directly and specifically the semiconductorcatalyzed reaction rates. For exam...
متن کاملInvestigation of localized surface plasmon/grating-coupled surface plasmon enhanced photocurrent in TiO2 thin films.
We fabricated plasmonic gold nanoparticle (AuNP)-TiO2 nanocomposite films and measured the photocurrent that originates from the water-splitting reaction catalyzed by the AuNP-TiO2 nanocomposite photoelectrocatalytic (PEC) electrode. The localized surface plasmon resonance (LSPR) of the gold nanoparticles affected the generation of photocurrent by TiO2 upon illumination with visible light. Elec...
متن کاملAu nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting.
Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 29 شماره
صفحات -
تاریخ انتشار 2015